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Grading is the process of interpreting learning competence to inform learners and instructors of the current learning ability levels
and necessary improvement. For norm-referenced grading, the instructors use a conventionally statistical method, z score. It is
difficult for such a method to achieve explainable grade discrimination to resolve dispute between learners and instructors. To
solve such difficulty, this paper proposes a simple and efficient algorithm for explainable norm-referenced grading. Moreover, the
rise of artificial intelligence nowadays makes machine learning techniques attractive to the norm-referenced grading in general.
�is paper also investigates two popular clusteringmethods, K-means and partitioning aroundmedoids.�e experiment relied on
the data sets of various score distributions and a metric, namely, Davies–Bouldin index. �e comparative evaluation reveals that
our algorithm overall outperforms the other three methods and is appropriate for all kinds of data sets in almost all cases. Our
findings however lead to a practically useful guideline for the selection of appropriate grading methods including both clustering
methods and z score.

1. Introduction

In both formal and informal education, grading is the
process of interpreting learning competence to inform
learners and instructors of current learning ability levels and
necessary improvement. �ere are basically two types of
nonbinary grading systems [1]: criterion-referenced grading
and norm-referenced grading. �e former normally calcu-
lates the percentage of a learning score and maps it to the
predefined percent range of a specific grade. �is grading
system is suitable for an examination that covers all content
topics of learning and thus requires long exam-taking as well
as answer-checking times. In contrast, large classes and/or
large courses widely use the norm-referenced grading sys-
tem to meet exam-taking time constraints and to save exam-
answer-checking resources. Such a system compares the
score of each individual to relative criteria defined based on
all individuals’ scores to determine a proper grade. �e
criteria are set by a conventionally statistical means either

without or with conditions (e.g., a class’s grade point average
(GPA) must be kept below 3.25).

�is paper focuses on the unconditionally norm-refer-
enced grading. �e type of problem that the paper targets is
data clustering where its difficulty is that the reasons behind
cluster boundaries must be explainable as the first priority. A
concrete problem is norm-referenced grading while its
difficulty is that how to make learners whose scores are
contiguously ranked accept their different grades (i.e., their
scores fell in different cluster boundaries) with no doubt. To
our experiences, this classical problem has long made
graders seriously reluctant to resolve dispute with learners.
Let us consider the following example to comprehend such a
situation: given a simplified series of ranked scores . . ., 84,
80, 78, . . ., performing the norm-referenced grading on such
a score series by using a traditional method may result in
grades . . ., A, B, B, . . ., respectively. �e learner who scores
80 can make an objection to why he or she receives B rather
than A. It is not only difficult for grader to explain the entire
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steps of the traditional method (which is complicated) but
also difficult for the learner to understand. Our algorithm
provides a simple and clear-cut justification based on the
widest score gaps: “because 80 is closer to 78 than to 84 so 80
should be assigned the same performance level as 78 rather
than 84.”

�e rise of artificial intelligence nowadays makes ma-
chine learning techniques attractive to the norm-referenced
grading. We therefore investigate an opportunity to ex-
clusively adopt four methods from the realm of statistical
and machine learning: our novel algorithm, a conventionally
statistical method, and two unsupervised machine learning
techniques, namely, K-means and Partitioning around
medoids (PAM) (aka K-medoids). We selected the unsu-
pervised learning techniques since the norm-referenced
grading cannot have a training data set. In particular, we
selected K-means and PAM as they are the only well-known
clustering algorithms that allow us to specify the number of
output clusters to represent the desired number of grades (as
specified by an employed grading policy). �erefore, both
K-means and PAM are naturally applicable to the norm-
referenced grading.�e grading results of each approach will
be measured and compared based on the practical data sets
of various distribution characteristics.

�e main contributions of this paper are a simple and
efficient grading algorithm and a novel insight into the
performance of statistical method, machine learning
methods, and our algorithm in unconditionally norm-ref-
erenced grading. To the best of our knowledge, we also
demonstrate for the first time the applicability of K-means
and PAM clustering techniques for norm-referenced
grading. �e merit of this paper would help worldwide
graders with the selection of the right grading method to
meet their objectives.

�e rest of this paper is organized as follows. Section 2
explores previously existing research studies. Section 3 ex-
plains the z score grading method. Section 4 reviews ma-
chine learning techniques, which includes K-means and
PAM, applicable to norm-referenced grading. Section 5
explains our proposed grading algorithm. Section 6 justifies
a grading performance metric in terms of clustering quality.
Section 7 experiments our algorithm, z score, K-means, and
PAM methods based on normal and asymmetric distribu-
tion data sets. Section 8 discusses the main findings. Section
9 draws the conclusion.

2. Related Work

As for applying a machine learning clustering technique to
learners’ achievement, Arora and Badal [2] analyzed the
competency of students by using K-means. �e competency
is attributed by 10-subject marks. �e centroid of each
cluster was mapped to one of the grade symbols A to G. �e
resulting grade of each cluster was the competency indicator
of students belonging to such a cluster. Academic planners
could use such an indicator to take appropriate action to
remedy the students. Similarly, Borgavakar and Shrivastava
[3] clustered GPAs and internal class assessments (e.g., class
test marks, lab performance, assignment, quiz, and

attendance) separately by using K-means. �erefore, each
student’s competency was associated with several clusters,
which were used to create a set of rules for classifying the
student. Any weak students were identified before the final
exam to reduce the ratio of fail students. Research by
Parveen et al. [4] employed K-means to create 9 groups of
GPAs: exceptional, excellent, superior, very good, above
average, good, high pass, pass, and fail. Students whose
GPAs belonged to the exceptional and the fail groups were
called gifted and dunce, respectively. �e gifted students
were enhanced of their knowledge, whereas the dunce
students were remedied through differentiated instruction.
Research by Shankar et al. [5] clustered students from
different countries based on their attributes: average grade,
the number of participated events, the number of active
days, and the number of attended chapters. An optimal k
value of K-means was determined bymeans of the Silhouette
index resulting in k� 3. Among the 3 clusters, the most
compact cluster (i.e., a cluster with the least value of within-
cluster sum of square) was further analyzed for correlation
between the average grade and the other attributes. Xi [6]
utilized K-means to cluster students’ test scores into 4
classes, excellent, good, moderate, and underachiever, to
take the appropriate self-development and teaching strategy
for treatment. Research by Iqbal et al. [7] explored several
machine learning techniques for early grade prediction to
allow instructors to improve students’ competency in early
stages. In such work, Restricted Boltzmann Machine was
found to be most accurate for students’ grade prediction.
K-means was also used to cluster students based on technical
course and nontechnical course performance.

Regarding an automated grading and scoring approach,
Ramen and Joachims [8] proposed a peer grading method to
enable student evaluation at scale by having students assess
each other. Since students are not trained in grading, the
method enlisted probabilistic models and ordinal peer
feedback to solve a rank aggregation problem. Bai and Chen
[9] proposed a method to automatically construct grade
membership functions, lenient-type grades, strict-type
grades, and normal-type grades, to perform fuzzy reasoning
to infer students’ scores.

�is paper significantly extends our immature work [10]
with a full-fledged algorithm, a newly practical data set, a
newly experimented machine learning method, a set of new
findings, and a novel guideline for method selection.

3. Conventionally Statistical Grading

A conventionally statistical grading method relies on z
scores and t scores [1]. z score is a measure of how many
standard deviations below or above the population mean a
raw score is. z score (z) is technically defined in (1) as the
signed fractional number of standard deviations (σ) by
which the value of an observation or a data point x is
above the mean value (μ) of what is being observed or
measured.

Z �
x − μ
σ

. (1)

2 Applied Computational Intelligence and Soft Computing
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Observed values above the mean have positive z scores,
otherwise, negative z scores.

�e t score converts individual scores into standard
forms and is much like z score when the sample size is above
30. In psychometrics, t score (t) is a z score shifted and scaled
to have a mean of 50 and a standard deviation of 10 as in (2).

t � 10∗Z + 50. (2)

�e statistical grading method begins by converting raw
scores to z scores. �e z scores are further converted to t
scores to simplify interpretation because t scores normally
range from 0 to 100, unlike z scores that can be negative real
numbers. �e t scores are then sorted and a range between
maximum and minimum t scores is divided by the desired
number of grades to obtain an identical score interval. �e
interval is used to define the t score ranges of all grades. In
this way, raw scores can be mapped to z scores, the z scores
to t scores, the t scores to t score intervals, and the t score
intervals to resulting grades, respectively.

4. Machine Learning-Based Grading

�is section explains how to apply K-means and PAM
clustering algorithms to the norm-referenced grading, which
is natural to unsupervised learning rather than supervised
one. K-means and PAM were selected since both allow
specifying the number of clusters in advance to match the
number of eligible grades known a priori.

4.1. K-Means. K-means [11] is an unsupervised machine
learning technique for partitioning n objects into k clusters.
K-means begins by randomizing k centroids, one for each
cluster. Assign every object to a cluster whose centroid is
nearest to the object. Recalculate the means of all assigned
objects within each cluster to serve as k new centroids aka
barycenters of the clusters. Iterate the object assigned to the
clusters and the centroid recalculation until no more object
moves between clusters. In other words, the K-means al-
gorithm aims at minimizing an objective function
􏽐

k
j�1 􏽐

nj

i�1 |xi − cj|, where nj is the number of objects in
cluster j, xi �<xi1, xi2, . . ., xim> is an object in cluster j whose
centroid is cj, xi1 to xim are the features of xi, and |xi − cj| is
Euclidean distance. Also, note that the initial centroid
randomization can result in different final clusters.

When applying the K-means algorithm to higher edu-
cational grading, k is set to the number of eligible grades.
Graders must decide such a number in advance.

4.2. Partitioning around Medoids. Unlike K-means repre-
senting each cluster with the mean value of objects within
clusters, PAM [12] represents each cluster by one of the
objects nearest to the cluster’s center. PAM proceeds in two
phases. In the first phase, build, select k objects nearest to the
center of all other unselected objects. Such k objects called
medoids are selected one by one. In the second phase, swap,
assign all unselected objects to their nearest medoids to

obtain k initial clusters. For each cluster, calculate average
dissimilarity (i.e., average distance) between a medoid and
the other objects. �en, for such a cluster, search whether
any object if it became a new medoid minimizes the average
dissimilarity. If it does, select such an object as a new
medoid. Once all clusters have been searched and if at least
one medoid has changed, repeat the second phase; other-
wise, PAM ends.

Similar to applying K-means, PAM requires that k be set
to the number of eligible grade symbols beforehand.

5. Proposed Grading Algorithm

�is section proposes a statistical algorithm for norm-ref-
erenced unconditional grading.�e algorithm works step by
step as defined in Algorithm 1.

�e algorithm is explained as follows. In line 1, sort(S)
initially ranks the scores of learners within a group from the
best down to the worst. In line 2, countEligibleGrades(GS)
counts the number of eligible grades. In line 3, calcu-
lateAllScoreGaps(S) sequentially goes through the score
ranked list to straightforwardly determine a gap between
every two contiguous scores (i.e., a score difference). Line 4
sorts the gaps in a descending order. In line 5, selectWi-
destGaps(SG, cnt—1) selects a set of maximum gaps that
equal the number of eligible grades minus one. For instance,
four eligible grades require four score ranges; thus, select-
WidestGaps(SG, cnt—1) function returns the first three
maximum gaps. In case that some gaps are identical, the gaps
of scores that are closest to the middle of the score rank will
be returned by the function. In line 6, defineScoreRanges-
FromGaps(SG) creates a series of score ranges, each of which
is associated with each eligible grade. For instance, the score
range of grade B is 76 to 82 points. Finally, grades(S, R) in
line 7 completely assigns proper grades to all scores based on
the defined score ranges. In this way, our algorithm is simple
while its performance will be proved in Section 7.

As for the cost effectiveness of the proposed algorithm,
we analyze its computational complexity as follows. Let n be
the number of scores to be graded (i.e., |S|). In the worst case,
sort(S) in line 1 finishes in nlog2n, countEligibleGrades(GS)
takes |GS|, calculateAllScoreGaps(S) takes n to do all sub-
tractions between every consecutive scores, descending-
Sort(SG) takes n/2log2n/2, selectWidestGaps(SG, cnt—1)
takes |GS|—1, defineScoreRangesFromGaps(SG) takes |GS|,
and grades(S, R) takes n. �erefore, the algorithm takes at
most nlog2n+ |GS| + n+ n/2log2n/2 + (|GS|—1) + |GS| + n.
Suppose that n is much greater than |GS|, thus our
algorithm�O(nlog2n), which is relatively tractable.

Remark that our algorithm gets only two input pa-
rameters, the learners’ scores and the eligible grades while
the local variables of the algorithm are used for temporary
value assignment rather than as controlling parameters.
Also, all of the called functions in our algorithm perform
straightforward tasks as implied by their names without any
tuning parameters. �erefore, our algorithm keeps users
away from the parameter tuning burden.

Applied Computational Intelligence and Soft Computing 3
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6. Grading Performance Measurement

In this paper, the performance of each grading method is
represented with clustering quality. �e quality of clustering
results can be measured by using a well-known metric
namely Davies–Bouldin index (DBI). We employed DBI
instead of another related metric, Silhouette, because DBI is
much computationally less complex; thus, it is highly
readable by practical graders. Let us denote by δj the mean
intracluster distance of the nj points (each of which is
expressed as xi) belonging to cluster Cj to their barycenter cj:
δj � (1/nj)(􏽐

nj

i�1 |xi − cj|). Let us also denote a distance be-
tween barycenters cj′ and cj of clusters Cj′ and Cj by Δjj′� |
cj′ − cj|. DBI is figured out by using (3) [13]. �e lower DBI,
the better quality of clustering results (i.e., low DBI clusters
have low intracluster distances and high intercluster
distances).

DBI �
1
k

􏽘

k

j�1
max

∀j′∈ 1,..,k{ }∧ j′ ≠ j

δj + δj′

Δjj′
􏼠 􏼡. (3)

�e underlying reason for using DBI as the grading
performance metric in norm-referenced grading is intuitive
as follows. Learners with much similar achievement should
receive the same grade (i.e., equivalent to low intracluster
distances), and different grades must be able to discriminate
achievements between the groups of learners as much clearly
as possible (i.e., equivalent to high intercluster distances).
DBI value will be low (i.e., better grading performance re-
sult) if clusters are compact and far away from one another.

7. Evaluation

We evaluated our algorithm, z score method, K-means, and
PAM in norm-referenced unconditional grading. Experi-
mental configuration and data sets’ characteristics are ini-
tially described. �en, grading results along with
performance metrics are provided.

7.1. Experimental Configuration. A grading policy that
evaluated the scores into 5 eligible grades, A, B, C, D, and F,
without any class GPA constraint was engaged. �e grading
policy was implemented in 4 ways by using our algorithm, z
score, K-means, and PAM methods. �e number of clusters
was predefined to 5 (i.e., the 5 eligible grades) in K-means
and PAM. Each method had its performance measured in
DBI metric as if the grades represented distinct clusters.

�e six data sets of accumulative term scores were used
to ensure fair comparison among the grading methods.
We characterized the data sets through data distribution
in order to verify their coverage of all possible distribution
patterns (i.e., the representativeness of various case
studies). In particular, the data distribution patterns that
were employed included normal distribution (ND data set
in Table 1) and positively and negatively skewed distri-
butions (SD+ and SD− data sets in Tables 2 and 3). �e
algorithm’s effectiveness was also double-checked by
using two additional data sets, slightly positively and
negatively skewed distributions (RD+ and RD− data sets
in Tables 4 and 5). Last but not least, the other rare data set
with an exclusively wide score gap (WD data set in Ta-
ble 6) was also exploited. �e scores relied on a scale of 0.0
to 100.0 points. A one-dimensional vector was used to
represent each data set as shown in Tables 1–6 so that
readers could dive deep into the scores to judge the ef-
fectiveness of each applied method. Every data set is also
described in the term of statistic along with its distri-
bution pattern.

f(x) �
1

σ
���
2π

√ e
− (1/2)((x− μ)/σ)2( ). (4)

�e first data set, namely, ND, has a normal distribution.
Table 1 shows the raw scores of ND. Mean and median are
63. Mode is unavailable as every score has the same fre-
quency of 1. σ is 13.9.

Input
S: vector of learners’ scores
GS: set of ranked eligible grade symbols

Output
G: vector of learners’ grades

Local variable
cnt: number of eligible grades
SG: vector of score gaps
R: vector of score ranges

Begin
(1) S← sort(S);
(2) cnt← countEligibleGrades(GS);
(3) SG← calculateAllScoreGaps(S);
(4) SG← descendingSort(SG);
(5) SG← selectWidestGaps(SG, cnt – 1);
(6) R← defineScoreRangesFromGaps(SG);
(7) G← grades(S, R);

End

ALGORITHM 1: Proposed algorithm.

4 Applied Computational Intelligence and Soft Computing
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To comprehend the characteristics of ND, Figure 1
projects its normal distribution. �e horizontal axis repre-
sents z score. �e curve was computed with (4) where x
represents a score. �e area under the curve represents a
distribution value [1].

�e second and the third data sets have positively and
negatively skewed distributions namely SD+ and SD− , re-
spectively. Positively skewed distribution is an asymmetric
bell shape skewed to the left probably caused by overly
difficult exam questions from the viewpoint of learners.
Table 2 shows the raw scores of SD+ set. Mode, median,
mean, and σ are 52, 60.9, 53, and 14.236 respectively. Fig-
ure 2 depicts the normal distribution of SD+ set. Its
skewness is heavy and equals 1.006.

Negatively skewed distribution is an asymmetric bell
shape skewed to the right probably caused by too easy exam
questions from the viewpoint of learners. Table 3 shows the
raw scores of SD− . Mode, median, mean, and σ equal 87, 82,
73.5, and 16.929, respectively. Figure 3 depicts the normal
distribution of SD− . �e skewness is as heavily as − 1.078.

�ese 3 data sets contain the same number of raw scores
and were realistically synthesized to clarify the extreme
behaviors of the four studied methods.

�e fourth data set RD− was collected from a group of
real 61 anonymized learners taking the same undergrad
course in the academic year 2019. Unlike SD+ and SD− that

are heavily skewed, RD− (and RD+) represents imperfectly
normal distributions (i.e., slightly skewed). RD− in Table 4
has the slightly negative skew of − 0.138 as shown in Figure 4.
Mode, median, mean, and σ equal 66.7, 56.6, 57.9, and
12.136 respectively.

�e fifth data set, RD+, was the real term scores of the
other group of 100 anonymized learners from another
anonymized university. Opposite to RD− , RD+has the
slightly positive skew of 0.155. �e characteristics of
RD+ are shown in Table 5 and Figure 5. Mode, median,
mean, and σ equal 82.5, 66.4, 65.7, and 9.662, respectively.

�e last data set, WD, consists of the broad range of
scores with a relatively wide gap. Such a score pattern exists
in the group of learners with a learning competency divide.
As a result, some enclosed grade ought to be skipped. �e
characteristics of WD are shown in Table 5. A significant gap
lies between the scores 79 and 30 as depicted in Figure 6.
Mode, median, mean, and σ equal 87, 82, 62.3, and 31.975,
respectively. WD has the moderately negative skew of
− 0.450.

7.2. Grading Result. We graded ND data set by using the
proposed algorithm, z score, K-means, and PAM methods
and reported their results, respectively, in angle brackets:

< our-algorithm grade, z score grade, K-means grade,
PAM grade >

Table 2: Sorted scores of SD+ data set.

Record# Score
1 92
2 90
3 89
4 86
5 77
6 74
7 73
8 73
9 73
10 65
11 62
12 61
13 60
14 54
15 53
16 53
17 53
18 52
19 52
20 52
21 52
22 52
23 51
24 51
25 51
26 51
27 50
28 50
29 46
30 46
31 45

Table 1: Sorted scores of ND data set.

Record# Score
1 88
2 86
3 84
4 79
5 78
6 77
7 76
8 75
9 74
10 73
11 72
12 67
13 66
14 65
15 64
16 63
17 62
18 61
19 60
20 59
21 54
22 53
23 52
24 51
25 50
26 49
27 48
28 47
29 42
30 40
31 38

Applied Computational Intelligence and Soft Computing 5
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shown in Table 7 resulting in an Nx4 matrix where N
rows equal a number of scores. Our algorithm delivered
exactly the same results as those of K-means. Both methods’
DBIs equaled 0.330. z score method yielded the equivalent
DBI of 0.443. It might be questionable from student
viewpoint why graders using z score gave learners who
scored 78 and 79 the same grades A as that of 84 and 47mark
holder the same grade F as that of 42 marks.�ese are simply
because 78 and 79 fell in the same z score interval of A while
47 fell in the z score interval of F. PAM also yielded the DBI
of 0.330 despite too many grades A.

We also graded SD+ data set with our algorithm, z score,
K-means, and PAM methods as shown in Table 8. Our
algorithm delivered the same results as K-means and PAM.
�eir DBIs were 0.222. z score method gave the equivalent
DBI of 0.575. �ere were many grades F when using z score
method.

Next, we graded SD− data set in Table 9. Our algorithm
delivered the equivalent DBI of 0.299. �e DBIs of z score,
K-means, and PAM methods were equally 0.233.

Table 3: Sorted scores of SD− data set.

Record# Score
1 94
2 93
3 87
4 87
5 87
6 87
7 86
8 86
9 86
10 85
11 85
12 85
13 84
14 84
15 83
16 82
17 77
18 75
19 74
20 73
21 72
22 65
23 64
24 63
25 62
26 61
27 52
28 50
29 38
30 36
31 34

Table 4: Sorted scores of RD− data set.

Record# Score
1 80.8
2 80.2
3 78.7
4 76.8
5 76.1
6 75.2
7 75.1
8 72.5
9 72.1
10 71.6
11 70.8
12 70.6
13 69.1
14 68.7
15 68
16 67.6
17 66.7
18 66.7
19 65.8
20 63.5
21 61.6
22 61.5
23 61.4
24 60.7

Table 4: Continued.

Record# Score
25 60.5
26 59.2
27 58.7
28 58.5
29 57.8
30 57.4
31 56.6
32 55.7
33 55.5
34 55.5
35 55.2
36 55.2
37 55.1
38 54.7
39 53.9
40 52.6
41 52.5
42 51.7
43 51.3
44 51
45 50.7
46 50
47 48.8
48 48.7
49 48.6
50 46.7
51 46.4
52 46.2
53 45
54 44.9
55 44.6
56 44.5
57 43.5
58 42
59 35.7
60 28.4
61 28

6 Applied Computational Intelligence and Soft Computing
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In practice, there is no perfectly normal distribution with
respect to learners’ achievement. Now experimental results
based on data sets having slightly skewed distributions are
described. We graded RD data set with our algorithm, z
score, K-means, and PAM methods as shown in Table 10.
�e gap columns show differences between every two
consecutive scores (i.e., the results of calculateAllScor-
eGaps() function in Algorithm (1) to be utilized by our
algorithm where 4 widest gaps (indicated by the bold
numbers) were used as grading steps.

All four methods produced different grading results.
Particularly, our algorithm and K-means assigned A for the
same group of learners whereas z score and K-means
methods gave F to the same group of learners. Our algorithm
had the DBI of 0.375 whereas K-means, PAM, and z score
method gave the equivalent DBIs of 0.469, 0.474, and 0.492,

Table 5: Sorted scores of RD+data set.

Record# Score
1 89.47
2 87.1
3 82.73
4 82.53
5 82.53
6 82.17
7 80.7
8 80.5
9 79.97
10 79.43
11 79.3
12 78.9
13 78.47
14 78.27
15 77.87
16 77.87
17 75.73
18 74.57
19 73.3
20 73.2
21 73.1
22 72.83
23 72.63
24 72.1
25 71.83
26 71.77
27 70.8
28 70.4
29 70.23
30 70.2
31 70.2
32 69.43
33 69.17
34 69.17
35 69.1
36 68.77
37 68.6
383 68.27
9 67.87
40 67.77
41 67.63
42 67.63
43 67.57
44 67.33
45 67.1
46 67
47 66.77
48 66.73
49 66.4
50 66.37
51 66.37
52 66.1
53 65.87
54 65.8
55 64.77
56 64.73
57 64.73
58 64.57
59 64.57
60 64.3

Table 5: Continued.

Record# Score
61 64.17
62 64.13
63 63.93
64 63.9
65 63.57
66 63
67 62.83
68 60.63
69 60.33
70 59.83
71 58.93
72 58.87
73 58.53
74 58.47
75 58.27
76 57.53
77 57
78 56.77
79 55
80 54.8
81 54.57
82 54.5
83 54.5
84 54.43
85 54.37
86 53.8
87 53.73
88 53.37
89 53.37
90 52.87
91 52.47
92 52.1
93 52
94 51.97
95 51.8
96 50.9
97 50.7
98 50.2
99 50.1
100 45
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respectively. �erefore, our algorithm delivered the best
grading results for RD− -. Our algorithm accomplished the
lowest DBI partly because grade D has only one member
score, comparable to the smallest possible cluster, which DBI
favors.

We graded RD+data set as shown in Table 11. With this
large data set, the grading results of all methods are totally
different. Our algorithm, z score method, K-means, and
PAMmethods yielded DBIs of 0.345, 0.529, 0.486, and 0.487,
respectively, meaning that our algorithm defeated the others.

WD data set was graded as shown in Table 12. Our
algorithm, z score method, K-means, and PAM yielded DBIs
of 0.403, 0.452, 0.449, and 0.449, respectively. Although our
algorithm outperformed the others in terms of DBI, recall
thatWDdata set had the exceptional pattern of so significant
gap that assigning 5 grades completely may not be plausible.
As shown in Table 12, only z score method is capable of
automatically skipping grades C and D.

Table 6: Sorted scores of WD data set.

Record# Score
1 98
2 97
3 93
4 92
5 91
6 90
7 89
8 87
9 87
10 86
11 85
12 85
13 84
14 83
15 83
16 82
17 81
18 81
19 79
20 30
21 28
22 27
23 26
24 25
25 23
26 22
27 21
28 21
29 20
30 18
31 17
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Figure 1: Distribution of ND data set.
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Figure 2: Distribution of SD+data set.
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Figure 3: Distribution of SD− .
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Figure 4: Distribution of RD− .
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8. Result Analysis, Finding, and Discussion

Figure 7 comparatively projects all aforementioned DBIs
with respect to each grading method and data set. �ey can
be analyzed as follows. Our algorithm has DBIs’ μ� 0.329
and σ � 0.058. z score has DBIs’ μ� 0.454 and σ � 0.109.
K-means’ DBIs have μ� 0.365 and σ � 0.109. PAM′ DBIs
have μ� 0.366 and σ � 0.110. �e overall performance of
each method is revealed in Figure 8. As the lower DBI the
better clustering quality, the heights of stacks show that our
algorithm performs best due to the lowest overall DBI
whereas K-means and PAM produce underneath perfor-
mance results by 10.90% and 11.21% higher DBIs than ours,
respectively. z score method performs worst, 38.03% greater
DBI than ours. �ese relative performance differences show
the practical significance of our algorithm.

We also conducted paired (Student’s) t-test to evaluate
whether the means of our algorithm’s DBI are statistically
significantly different from those of the other methods.
Particularly, paired t-test was employed to compare DBI

means produced by our algorithm with those of z score,
K-means, and PAMmethods for the 6 data sets. We used the
standard significance level of 0.05 and the hypothesized
mean difference of 0 (i.e., null hypothesis value indicating no
DBI difference between methods) to figure out p value for
one-tailed t-test. A smaller p value means that there is
stronger evidence in favor of an alternative hypothesis (i.e.,
there is DBI difference between methods). Firstly, DBI
difference between our algorithm and z score had the p value
of 0.040, which was less than 0.050.�erefore, our algorithm
outperformed z score with statistical significance. Secondly,
DBI difference between our algorithm and K-means had the
p value of 0.144. Lastly, DBI difference between our algo-
rithm and PAM had the p value of 0.141. �erefore, our
algorithm outperformed K-means and PAM without sta-
tistical significance. Note that, unlike the practical signifi-
cance, the statistical significance only provides evidence that
performance differences exist since it is a mathematical
definition that does not know anything about our subject
area.

0
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0.01
0.015
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0.025

0.03
0.035
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0.045

–3 –2 –1 0 1 2 3
Times of standard deviation
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Figure 5: Distribution of RD+.
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Figure 6: Divide in WD data set.

Table 7: Grading results of ND.

Score Grade
88 <A, A, A, A>
86 <A, A, A, A>
84 <A, A, A, A>
79 <B, A, B, A>
78 <B, A, B, A>
77 <B, B, B, A>
76 <B, B, B, A>
75 <B, B, B, A>
74 <B, B, B, A>
73 <B, B, B, A>
72 <B, B, B, A>
67 <C, C, C, A>
66 <C, C, C, A>
65 <C, C, C, A>
64 <C, C, C, A>
63 <D, D, D, A>
62 <D, D, D, A>
61 <C, C, C, A>
60 <C, C, C, A>
59 <C, C, C, A>
54 <C, C, C, B>
53 <C, C, C, B>
52 <D, D, D, B>
51 <D, D, D, B>
50 <D, D, D, B>
49 <D, D, D, C>
48 <D, D, D, D>
47 <D, F, D, D>
42 <F, F, F, F>
40 <F, F, F, F>
38 <F, F, F, F>
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Our algorithm and K-means lead to fairly similar
grading results based on normal and heavily-positively
skewed distributions. Furthermore, by examining
Tables 7–12, PAM produced the most A and the least F by
average.

�e behavior of our proposed algorithm can be discussed
in terms of the definition of (3) as follows. �e algorithm
performed clustering effectively in almost all cases of data
sets (i.e., ND, SD+, RD− , RD+, and WD) because Algo-
rithm 1 always selects the maximum score gaps to draw
cluster boundaries, that is, maximum Δjj′. Although the
algorithm does not deal with the minimization of δj, it
usually has less impact on DBI than Δjj′ since δj takes part in
the summation (thus requiring the minimization of the
other term δj′

), whereas Δjj′ is the sole divider in (3).
Nevertheless, in an exceptional case, merely maximizing Δjj′
is not enough as substantiated by our algorithm that per-
formed worst when clustering SD− data set.

Key findings based on the result analysis are provided as
follows. In general, Figure 7 reveals that the absolute degree
rather than the positive or negative polar of skewness has
more impacts on the methods’ grading performance: the
greater the absolute skewness, the lower the grading per-
formance. �is is because the greater absolute skewness
implies more dispersed or dissimilar scores.

Table 8: Grading results of SD+.

Score Grade
92 <A, A, A, A>
90 <A, A, A, A>
89 <A, A, A, A>
86 <A, A, A, A>
77 <B, B, B, B>
74 <B, B, B, B>
73 <B, C, B, B>
73 <B, C, B, B>
73 <B, C, B, B>
65 <C, C, C, C>
61 <C, D, C, C>
61 <C, D, C, C>
60 <C, D, C, C>
54 <D, F, D, D>
53 <D, F, D, D>
53 <D, F, D, D>
53 <D, F, D, D>
52 <D, F, D, D>
52 <D, F, D, D>
52 <D, F, D, D>
52 <D, F, D, D>
52 <D, F, D, D>
51 <D, F, D, D>
51 <D, F, D, D>
51 <D, F, D, D>
51 <D, F, D, D>
50 <D, F, D, D>
50 <D, F, D, D>
46 <F, F, F, F>
46 <F, F, F, F>
45 <F, F, F, F>

Table 9: Grading results of SD− .

Score Grade
94 <A, A, A, A>
93 <A, A, A, A>
87 <B, A, A, A>
87 <B, A, A, A>
87 <B, A, A, A>
87 <B, A, A, A>
86 <B, A, A, A>
86 <B, A, A, A>
86 <B, A, A, A>
85 <B, A, A, A>
85 <B, A, A, A>
85 <B, A, A, A>
84 <B, A, A, A>
84 <B, A, A, A>
83 <B, A, A, A>
82 <B, A, A, A>
77 <B, B, B, B>
75 <B, B, B, B>
74 <B, B, B, B>
73 <B, B, B, B>
72 <B, B, B, B>
65 <C, C, C, C>
64 <C, C, C, C>
63 <C, C, C, C>
62 <C, C, C, C>
61 <C, C, C, C>
52 <D, D, D, D>
50 <D, D, D, D>
38 <F, F, F, F>
36 <F, F, F, F>
34 <F, F, F, F>

Table 10: Grading results of RD− .

Score Gap Grade
80.8 — <A,A,A,A>
80.2 0.6 <A,A,A,A>
78.7 1.5 <A,A,A,A>
76.8 1.9 <A,A,A,A>
76.1 0.7 <A,A,A,A>
75.2 0.9 <A,A,A,A>
75.1 0.1 <A,A,A,A>
72.5 2.6 <B,A,B,A>
72.1 0.4 <B,A,B,A>
71.6 0.5 <B,A,B,A>
70.8 0.8 <B,A,B,A>
70.6 0.2 <B,A,B,A>
69.1 1.5 <B,B,B,A>
68.7 0.4 <B,B,B,A>
68 0.7 <B,B,B,A>
67.6 0.4 <B,B,B,A>
66.7 0.9 <B,B,B,A>
66.7 0 <B,B,B,A>
65.8 0.9 <B,B,B,A>
63.5 2.3 <C,B,B,A>
61.6 1.9 <C,B,C,A>
61.5 0.1 <C,B,C,A>
61.4 0.1 <C,B,C,A>
60.7 0.7 <C,B,C,A>
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Considering the nature of each method in conjunction
with the above grading results leads to a guideline in Table 13
for appropriate method selection.

As we had not experimented our algorithm against data
sets from other application domains, we did not claim the
other applications of our algorithm besides that of the norm-
referenced grading. However, the potential applications of
our algorithm might include resource-consumer clustering
problems in real life where their practical requirements of
cluster-boundary explainability are the first priority: why
two contiguously ranked data points (i.e., consumer profiles)
belong to different clusters (i.e., different resource allocation
levels) needs to be straightforwardly acceptable by data point
owners. Some concrete applications can include the nation-
wide selection of government loan applicants. Otherwise,
serious arguments or even protests might occur between not
only data-clustering processor and data owners but also
discriminated data owners themselves. �e main charac-
teristic of our algorithm meets such requirements by pro-
viding a simple and clear-cut answer based on the widest gap

Table 11: Grading results of RD+.

Score Gap Grade
89.47 — <A,A,A,A>
87.1 2.37 <A,A,A,A>
82.73 4.37 <B,A,A,A>
82.53 0.2 <B,A,A,A>
82.53 0 <B,A,A,A>
82.17 0.36 <B,A,A,A>
80.7 1.47 <B,A,A,A>
80.5 0.2 <B,B,A,A>
79.97 0.53 <B,B,A,A>
79.43 0.54 <B,B,A,A>
79.3 0.13 <B,B,A,A>
78.9 0.4 <B,B,A,A>
78.47 0.43 <B,B,A,A>
78.27 0.2 <B,B,A,A>
77.87 0.4 <B,B,A,A>
77.87 0 <B,B,A,A>
75.73 2.14 <C,B,B,A>
74.57 1.16 <C,B,B,A>
73.3 1.27 <C,B,B,A>
73.2 0.1 <C,B,B,A>
73.1 0.1 <C,B,B,A>
72.83 0.27 <C,B,B,A>
72.63 0.2 <C,B,B,A>
72.1 0.53 <C,B,B,A>
71.83 0.27 <C,B,B,A>
71.77 0.06 <C,B,B,A>
70.8 0.97 <C,C,B,A>
70.4 0.4 <C,C,B,A>
70.23 0.17 <C,C,B,A>
70.2 0.03 <C,C,B,A>
70.2 0 <C,C,B,A>
69.43 0.77 <C,C,B,A>
69.17 0.26 <C,C,B,A>
69.17 0 <C,C,B,A>
69.1 0.07 <C,C,B,A>
68.77 0.33 <C,C,B,A>
68.6 0.17 <C,C,B,A>
68.27 0.33 <C,C,C,A>
67.87 0.4 <C,C,C,A>
67.77 0.1 <C,C,C,A>
67.63 0.14 <C,C,C,A>
67.63 0 <C,C,C,A>
67.57 0.06 <C,C,C,A>
67.33 0.24 <C,C,C,A>
67.1 0.23 <C,C,C,A>
67 0.1 <C,C,C,A>
66.77 0.23 <C,C,C,A>
66.73 0.04 <C,C,C,A>
66.4 0.33 <C,C,C,A>
66.37 0.03 <C,C,C,A>
66.37 0 <C,C,C,A>
66.1 0.27 <C,C,C,A>
65.87 0.23 <C,C,C,A>
65.8 0.07 <C,C,C,A>
64.77 1.03 <C,C,C,A>
64.73 0.04 <C,C,C,A>
64.73 0 <C,C,C,A>
64.57 0.16 <C,C,C,A>
64.57 0 <C,C,C,A>
64.3 0.27 <C,C,C,A>

Table 10: Continued.

Score Gap Grade
60.5 0.2 <C,B,C,A>
59.2 1.3 <C,C,C,A>
58.7 0.5 <C,C,C,A>
58.5 0.2 <C,C,C,A>
57.8 0.7 <C,C,C,A>
57.4 0.4 <C,C,C,A>
56.6 0.8 <C,C,C,A>
55.7 0.9 <C,C,C,A>
55.5 0.2 <C,C,C,A>
55.5 0 <C,C,C,A>
55.2 0.3 <C,C,C,A>
55.2 0 <C,C,C,A>
55.1 0.1 <C,C,C,A>
54.7 0.4 <C,C,C,A>
53.9 0.8 <C,C,C,A>
52.6 1.3 <C,C,C,A>
52.5 0.1 <C,C,C,A>
51.7 0.8 <C,C,D,A>
51.3 0.4 <C,C,D,A>
51 0.3 <C,C,D,A>
50.7 0.3 <C,C,D,A>
50 0.7 <C,C,D,A>
48.8 1.2 <C,C,D,A>
48.7 0.1 <C,C,D,A>
48.6 0.1 <C,D,D,A>
46.7 1.9 <C,D,D,A>
46.4 0.3 <C,D,D,A>
46.2 0.2 <C,D,D,A>
45 1.2 <C,D,D,A>
44.9 0.1 <C,D,D,A>
44.6 0.3 <C,D,D,A>
44.5 0.1 <C,D,D,A>
43.5 1 <C,D,D,A>
42 1.5 <C,D,D,B>
35.7 6.3 <D,F,F,C>
28.4 7.3 <F,F,F,F>
28 0.4 <F,F,F,F>
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between cluster boundaries; the other algorithms require
that data owners completely understand the complicated
algorithms to get answers.

Last but not least, to have an unbiased view, we point out
the limitation of the proposed algorithm as follows. Al-
though our algorithm can justify grade changes over eval-
uated scores through obvious score dissimilarity, the score
ranges of the grades might be relatively different unlike z
score. For instance, our algorithm might yield only a few
learners receiving grade B and more receiving grade C. �is
can be negatively translated as unfair chances to receive both
grades. Furthermore, unlike z score, our algorithm cannot
skip any eligible grade if no one deserves such a grade (i.e.,
criterion based). �e example lies in Table 12. However, this

drawback holds only if some sense of criterion-referenced
grading is introduced instead of pure norm-referenced
grading.

Table 11: Continued.

Score Gap Grade
64.17 0.13 <C,C,C,A>
64.13 0.04 <C,C,C,A>
63.93 0.2 <C,C,C,A>
63.9 0.03 <C,C,C,A>
63.57 0.33 <C,C,C,A>
63 0.57 <C,C,C,A>
62.83 0.17 <C,C,C,A>
60.63 2.2 <D,D,D,A>
60.33 0.3 <D,D,D,A>
59.83 0.5 <D,D,D,A>
58.93 0.9 <D,D,D,A>
58.87 0.06 <D,D,D,A>
58.53 0.34 <D,D,D,A>
58.47 0.06 <D,D,D,A>
58.27 0.2 <D,D,D,A>
57.53 0.74 <D,D,D,A>
57 0.53 <D,D,D,A>
56.77 0.23 <D,D,D,A>
55 1.77 <D,D,F,A>
54.8 0.2 <D,D,F,A>
54.57 0.23 <D,D,F,A>
54.5 0.07 <D,D,F,A>
54.5 0 <D,D,F,A>
54.43 0.07 <D,D,F,A>
54.37 0.06 <D,D,F,A>
53.8 0.57 <D,F,F,A>
53.73 0.07 <D,F,F,A>
53.37 0.36 <D,F,F,A>
53.37 0 <D,F,F,A>
52.87 0.5 <D,F,F,B>
52.47 0.4 <D,F,F,B>
52.1 0.37 <D,F,F,C>
52 0.1 <D,F,F,C>
51.97 0.03 <D,F,F,C>
51.8 0.17 <D,F,F,C>
50.9 0.9 <D,F,F,D>
50.7 0.2 <D,F,F,D>
50.2 0.5 <D,F,F,D>
50.1 0.1 <D,F,F,D>
45 5.1 <F,F,F,F>

Table 12: Grading results of WD.

Score Grade
98 <A, A, A, A>
97 <A, A, A, A>
93 <B, A, B, A>
92 <B, A, B, A>
91 <B, A, B, A>
90 <B, A, B, A>
89 <B, A, B, A>
87 <B, A, B, A>
87 <B, A, B, A>
86 <B, A, C, A>
85 <B, A, C, A>
85 <B, A, C, A>
84 <B, A, C, A>
83 <B, A, C, A>
83 <B, A, C, A>
82 <B, A, C, A>
81 <B, B, C, B>
81 <B, B, C, B>
79 <C, B, C, C>
30 <D, F, D, D>
28 <F, F, D, D>
27 <F, F, D, D>
26 <F, F, D, D>
25 <F, F, D, D>
23 <F, F, F, D>
22 <F, F, F, D>
21 <F, F, F, D>
21 <F, F, F, D>
20 <F, F, F, D>
18 <F, F, F, F>
17 <F, F, F, F>

Data set ND
Data set SD+

Data set SD–
Data set RD–

Data set RD+
Data set WD
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Figure 7: Performance of each method given each data set.
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9. Conclusions

�is paper provides the comprehension of four uncondi-
tionally norm-referenced grading methods: our new algo-
rithm, z score, K-means, and PAM. We conducted the
experiments with multiple data sets of various distribution
characteristics based on DBI performance metric. Overall,
our algorithm outperforms the other methods. K-means
method is ranked second followed by PAM. z score is the
worst but appropriate for some case. In fact, our algorithm is
so simple that it is implementable by using a spreadsheet
tool. We plan to conduct more experiments with constraints
and apply our algorithm to other domains as well.

Data Availability

�e data used to support the findings of the study are in-
cluded within the article.
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Figure 8: Overall performance of each method.

Table 13: Grading scheme selection guideline.

Method Characteristic Suitability

K-means It prioritizes intracluster similarity, that is, score similarity
within each learner group.

(i) �is method is suitable when the same grade is always
supposed to be held by learners with closely similar abilities.
(ii) As indicated in Figure 7, K-means is also suitable for
heavily skewed distribution like SD+ and SD− data sets.

PAM
PAM that produced the most A and the least F by average
implies that the group GPA of learners tends to be high when
grading with PAM.

PAM is also suitable for heavily skewed distribution like SD+
and SD− data sets as indicated in Figure 7.

Our
algorithm

(i) In contrast with K-means, our algorithm prioritizes
intercluster dissimilarity, that is, gaps between scores at the
borders of different groups.

(i) �is method is of a good choice when different grades are
supposed to distinguish learning ability divides.

(ii) Our algorithm is friendly to not only the heavily skewed
distribution (i.e., SD+ and SD− ) but also normal (i.e., ND)
and slightly-to-moderately skewed distributions (i.e., RD− ,
RD+, and WD).

(ii) Our algorithm is generally appropriate for all kinds of data
distributions. �e reason is that our algorithm’s strategy is the
determination of score gaps, which draw the clear-cut
boundaries of clusters.

z score

(i) z score method disregards the notion of cluster (dis)
similarity by engaging the even ranges of the best and the
worst scores within each learner group.

(i) �is method should be used when all grades are supposed
to encompass an equal score range. Let us consider Table 10.
Grade C produced by our algorithm ranges from 42 to 63.5
points which is relatively wider than the score ranges of the
other grades. �is situation is avoided in z score’s results. In
other words, z score tries to equalize score ranges across all
grades.

(ii) z score method is not good at dealing with norm-
referenced grading in general mainly because its operation is
blind to inherent raw-score gaps.

(ii) Unlike the other methods, z score method is
recommended for grading a score set that holds some wide
divide (i.e., WD) because z score method allows skippable
grades.
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